在江苏省对口单招数学试卷中,立体几何这一章的知识点每年都是重点考查的内容.每年我校考生在立体几何解答题上的得分情况都不太理想.向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.根据向量的数形特性,可以将几何图形数量化,从而通过运算解决立体几何中的平行、垂直等问题,避免构图和推理的复杂过程,有利于降低解题难度. 一、将立体几何中的平行问题转化为向量平行来证明 二、将立体几何中的垂直问题转化为向量垂直来证明 由于立体几何中的垂直问题图形比较复杂,加上学生的空间感比较薄弱,因此学生很难解决.把立体几何中的垂直问题转化为向量垂直,其优越性非常明显,具体体现在:两个向量垂直的充要条件可以把"垂直"体现在一个等式中变为纯粹的运算,所涉及的向量易于用坐标表示就足够了. 立体几何中的线线、线面、面面垂直,都可以转化为空间两个向量的垂直问题解决. 1."线线垂直"化为"向量垂直" 华罗庚关于"数形结合"有一句名言:"数缺形时少直观,形离数时难入微."向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.因此,充分掌握、运用好向量知识,可以提高学生的数形结合能力,培养学生发现问题的能力,帮助学生理清数形结合呈现的内在关系,把无形的解题思路形象化,有利于学生顺利地、高效率地解决数学问题.利用向量方法研究立体几何问题,能避免传统几何方法中繁琐的推理及论证,有效提高学生解决立体几何问题的能力. 参考文献: [1]单招生-相约在高校,数学:基础知识梳理. [2]单招零距离-数学:总复习方案. [3]吕林根,张紫霞,孙存金.立体几何学习指导书.
|
核心期刊网(www.hexinqk.com)秉承“诚以为基,信以为本”的宗旨,为广大学者老师提供投稿辅导、写作指导、核心期刊推荐等服务。 核心期刊网专业期刊发表机构,为学术研究工作者解决北大核心、CSSCI核心、统计源核心、EI核心等投稿辅导咨询与写作指导的问题。 投稿辅导咨询电话:18915033935 投稿辅导客服QQ: 投稿辅导投稿邮箱:1003158336@qq.com |