传统上,结果模型的分析一直是基于安全损失的基础上,即生命损失或损伤。然而,最近的工作已经开始注目于现有服务设施,主要关注的是大检查,延长使用寿命,保持老化的设施运转的维修费用等。在这种情况下,由于用户的延迟或停机时间造成的间接成本是可观的;例如,成本数据的分析表明,用户延迟和额外的车辆运营成本,比如交通改道或者桥梁关闭大约为初始建设成本的25%。 2.概率分析。经典可靠性理论用于分析不同载荷条件下的相同类型的,满足统计独立的大量因素构成的系统。这个发现在航空、核能、化学、建筑和工业过程中得到广泛应用。可靠性分析的理论基础是概率论与数理统计等学科,以及运筹学,系统工程与质量控制。这些因素的失败概率可以通过从操作经验观察得来的相对失败频率来解释。(1)经典的可靠性分析。如前所述,经典可靠性分析主要用于估计那些能够预测在设计和操作系统中起重要作用的技术元件寿命的统计特性。这些特征包括预期的失败率,风险函数,预期寿命和平均失败间隔时间。模型所考虑的系统通过逻辑树,其各个因素由决策节点来代表,从而可以评估各种定量措施的效能,例如系统在指定周期内失败的概率,在系统中引入冗余的积极影响,检查和维修活动的成本等。大多数的技术系统的失败率形如浴盆曲线。对于许多技术组件而言浴盆曲线是很典型的,比如出生缺陷,生产失误率等。当部件存活了一定的时间,这意味着出生缺陷是不存在的,可靠性随之增加。此后一段时间随着年龄的老化稳态性能发生变化。具有恒定失效率的功能检查部件很少使用,然而,对于具有缓慢增加的失败率的功能性检查部件可能是有用的,可以计划使用只要这样的失败率不超过一定的临界水平。如果失败率函数在开始是准恒定,然后突然有一个急剧的下降也没有太大的用途。但是,在这种情况下,替换策略更为合适。各种组件类型的浴盆曲线的有效性已经受到了广泛的质疑,不可能被认为是一直有效的。显然,图3显示的失败率随着时间的变化不是恒定的。在这样的情况下,随时间变化的失败率被称为风险函数。这是一个条件失败率,定义为组件或者系统在时间t时刻的失败概率。 一个重要的问题是在观察的基础上对失败率的评价。正如前面所提到的,失败率数据可以从不同的应用领域的失败数据库中获取。当然在评估失败率的时候必须小心,如果组件在观察期的初期并不是新的,其失败率可能会超过估计(值),如果观察到的时间间隔太短,可能观察不到失败的发生。对于这样的情况,各种文献提供了不同的方法来解决这个问题。另外,失败率也可能采用最大似然估计方法来处理,在这里选择的概率分布函数的参数可以在观察到的失败次数的基础上来估计。 图3失败率函数的浴盆曲线 (2)结构可靠性分析与需求能力可靠性分析。关于结构组件或其它需求能力系统,如水坝,管道,机械零部件等的可靠性与电气元件相比较是不同的;即,在大多数情况甚至个别组件失效的机理下,既使许多年的时间间隔其发生失败的情况亦是非常罕见的。结构组件失效主要是由于极端事件,如极端风、雪崩、大雪、地震,或联合作用,而不是由于老化或系统退化。然而,当前土木工程设施的老化或者退化等其他形式的“故障”已越来越多的成为问题的源头。 对于可靠性分析,有必要建立基于参数的统计特性等可用信息的概率模型。这些信息可能包括有关年度极端风速资料,混凝土抗压强度等实验结果。事实上,荷载和抗压能力的概率模型的不确定性的一个主要原因是由于缺乏失败概率的相关知识,并且在此基础上进行评估必须对失败概率有充分的理解,即不再考虑结构的真实失败概率而考虑结构性能的不确定性。 对于一个结构组件,其不确定的抗力R和负荷S被建模为随机变量的概率密度函数fR(r)和fS(s),失败概率可以定义为: P■=P(R≤S)=P(R-S≤0)=■F■(x)f■(x)dx 假设负载S和抗力R在统计上是独立的。抗力R的累积分布函数也可以被称为一个脆弱性曲线。脆弱性曲线是不依赖于负荷建模的,并有助于分离和确定抗力和负荷的不确定性对结构可靠度计算的影响。该系统性能和具有高负载的不确定性和可变性密切相关,如地震、飓风、洪水等。 在一般情况下,抗力和负荷不能仅由两个随机变量来描述,而是通过随机变量的函数来描述。因此,失败概率的一般公式可以通过以下的n维积分来确定: P■=■f■(x)dx 其中f■(x)为基本随机变量向量的联合概率密度函数,积分范围为失败区域。除了非常特殊的情况下和大多数实际应用中的数值近似方法以外,要解决式中的积分问题是不容易的。结构可靠性理论的基本原理的描述也可在JCSS概率模型代码找到。 (六)最优性和风险接受准则 决策是一个复杂的过程,并且通常和政治关系交织在一起。一些风险评估问题试图解决包括:谁来承担什么样的风险水平?谁是风险承担的受益者和付出者?什么样的信息是“合理”的风险管理所必须的,以及应该怎样分析?什么样的行为有什么样不同风险的结果,谁来评估风险管理的成功或失败?谁来决定不同风险之间的平衡? 这些问题都不容易解决,不能脱离风险接受准则来单独解决风险评估问题,即,什么样的风险是可以接受的?风险接受准则的实施和发展涉及:第一,感知风险:确保系统风险水平是可以接受或允许的;第二,正式的决策分析:比较和平衡风险与收益的风险分析技术;第三,监管安全目标:发展和增强风险接受准则的立法和法律框架。 风险接受准则一般采用美国核管理委员会、英国健康与安全执行局和其他权威监管部门的规则,总体原则是:应尽可能合理压低(ALARP)或尽可能达到最低(ALARA)。例如定义为像“低”,“合理”,“可能”,“达到”等等,这样的术语是非常主观的,容易被以保守的方式解释。 1.个人和社会风险。这里有一个值得注意的问题,就是要重新认识到风险接受是一个与人类权利相关的、基本的、哲学问题。联合国人权事务高级专员撰文对人类权利做了专门的规范,这里给出相关以便参考: (1)所有的人都是生来平等的,有尊严和权利的平等与自由。他们赋有理性和良心,彼此间应有兄弟般关系。 (2)每个人都有生存的权利,都是自由和安全的个体。 (3)法律面前人人平等,并有权不受任何歧视,受到法律的平等保护。 宣言强调要考虑所有的人是平等的,而且强调个人人身安全的权利,道德和法律上的义务。因此无论可接受风险的标准如何制定,我们应该永远记住,上述人权基本原则是不可违背的。 众所周知,安全是需要成本的,下面我们将做更多的讨论,因此社会个体成员的安全保证与社会所能承受的负担密切相关。然而,对于社会代表都应该有一个总体的道德义务去考虑投资与开销等“所有的资源能否很好的安排”,以尝试达到宣言中的目标。 |
核心期刊网(www.hexinqk.com)秉承“诚以为基,信以为本”的宗旨,为广大学者老师提供投稿辅导、写作指导、核心期刊推荐等服务。 核心期刊网专业期刊发表机构,为学术研究工作者解决北大核心、CSSCI核心、统计源核心、EI核心等投稿辅导咨询与写作指导的问题。 投稿辅导咨询电话:18915033935 投稿辅导客服QQ: 投稿辅导投稿邮箱:1003158336@qq.com |