0引言 电源管理IC因具有体积小、转换速率高等优点,已被广泛应用于电子、通信、电气、能源、航空航天及家电等领域。电源管理IC主要分为线性稳压电源转换器和DCDC开关电源转换器。相对于线性稳压电源转换器, DCDC开关电源转换器具有电压转换效率高和输出电压范围较宽的特点,因而DCDC开关电源转换器已成为主要的电源产品之一[1]。 降压型脉冲宽度调制型(pulse width modulation, PWM) DCDC开关电源是目前被广泛应用的1种DCDC开关电源结构[24],其电路结构如图1所示。由图1可知,模拟加法器是PWM型DCDC开关电源转换器的核心模块,其性能特性直接影响PWM型DCDC开关源的性能特性,因而要求模拟加法器在电源电压、温度等变化或漂移条件下,均能获得稳定的性能。针对这些要求,本文设计了1种适用于DCDC开关电源的模拟加法器。 1模拟加法器原理及构成 本文所设计的模拟加法器的原理图如图2所示。该模拟加法器主要由误差放大器A1,误差放大器A2,MOS晶体管M1-M4,电阻R1,R2以及电容C1,C2组成。其中,误差放大器A1与误差放大器A2完全相同,Vref为带隙基准参考提供的1.2 V带隙参考电压,其具有与温度、电源电压波动以及工艺无关的参考电压源。VA1为图1所示的DCDC开关电源转换器的放大器的输出信号。电容C1与电容C2在图2所示电路中起滤波以及电荷存储作用。 图1DCDC开关电源转换器电路结构图图2模拟加法器原理图误差放大器A1,MOS管M1与电阻R2构成负反馈系统。误差放大器A1强制放大器的两输入端电压相等,即V1=Vref,因而流过电阻R1的电流I1为I1=VrefR1(1)图2中,MOS晶体管M1与M2构成基本电流镜,因而流过M2的漏电流I2为I2=WL2WL1I1(2)(2)式中:WL1与WL2分别为晶体管M1与M2的宽长比,因而电阻R1的压差VR1为VR1=I2R2=WL2WL1×R2R1×Vref(3)同理,误差放大器A2与MOS管M4也构成负反馈系统。误差放大器A2强制其两输入端电压相等,即V2=VA1(4)由(3)式与(4)式可得模拟加法器的输出电压VA,其可表示为VA=VA1+WL2WL1×R2R1×Vref(5)在电路设计时,若M1与M2为完全相同的PMOS管,即WL1=WL2,同时R2与R1为同一类型电阻且具有相同的阻值,则(5)式可表示为VA=VA1+Vref(6)(6)式说明图2所示的电路能有效地实现两模拟电压求和的功能。 2误差放大器的分析与设计
在图2所示的电路中,误差放大器A1以及误差放大器A2为模拟加法器的重要单元模块,其性能特性直接影响模拟加法器的性能特性,其中误差放大器A1与误差放大器A2完全相同。针对此问题,本文所设计的误差放大器A1与误差放大器A2采用折叠式共源共栅结构[5],如图3所示。误差放大器主要由晶体管Ma0-Ma10、电阻R构成。其中Vp和Vn分别为误差放大器的差分输入端,Vb1-Vb3为偏置电压,Ma0与Ma1为PMOS输入对管,Ma3,Ma4与Ma5,Ma6形成电流镜对负载,实现双端输入和单端输出。图4为放大器的交流仿真曲线。仿真结果显示,在一定负载电容条件下,本文所设计的误差放大器获得65.5 dB的低频增益以及80°相位裕度,能够满足模拟加法器的要求。 |
核心期刊网(www.hexinqk.com)秉承“诚以为基,信以为本”的宗旨,为广大学者老师提供投稿辅导、写作指导、核心期刊推荐等服务。 核心期刊网专业期刊发表机构,为学术研究工作者解决北大核心、CSSCI核心、统计源核心、EI核心等投稿辅导咨询与写作指导的问题。 投稿辅导咨询电话:18915033935 投稿辅导客服QQ: 投稿辅导投稿邮箱:1003158336@qq.com |