你好,欢迎来到! 设为首页 收藏本站
联系电话
论文范文 当前位置: > 写作指南 > 论文范文 >

古典概型与几何概型解法扫描

时间:2014-01-18 11:48来源:核心期刊网 作者:张涛 点击:
在数学解题中,如果你对哪个知识点没有掌握,那么在解决相关题目时就会有巧妇难为无米之炊的困惑.如果你对数学解题方法没有掌握,那么在解题时就犹如航海没有了灯塔,旅行迷失了方向.可见数学解题方法的重要性,下面就让我们一起赏析古典概型与几何概型中的
  在数学解题中,如果你对哪个知识点没有掌握,那么在解决相关题目时就会有"巧妇难为无米之炊"的困惑.如果你对数学解题方法没有掌握,那么在解题时就犹如"航海没有了灯塔,旅行迷失了方向".可见数学解题方法的重要性,下面就让我们一起赏析古典概型与几何概型中的常用方法吧.
  一、求和法
  如果所求事件较为复杂,我们可以将事件分为几个彼此互斥的事件分别求解,利用互斥事件的概率加法公式求解.(当事件A与B互斥时,P(A∪B)=P(A)+P(B))
  例1某商场举行抽奖活动,规定每位顾客从装有编号为0,1,2,3的四个小球的抽奖箱中每次抽出一个小球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.
  分析:列出取球的所有结果,中三等奖包括两个互斥事件,分别求解,然后求和,中奖包括三个互斥事件,分别求解,然后求和.
  解析:设"中三等奖"为事件A,"中奖"为事件B.
  从四个小球中有放回地取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.
  (1)记两个小球的号码之和为x,则由题意可知,事件A包括两个互斥事件:x=4,x=3.
  事件x=4的取法有3种:(1,3),(2,2),(3,1),故P(x=4)=316;
  事件x=3的取法有4种:(0,3),(1,2),(2,1),(3,0),故P(x=3)=416.
  由互斥事件的加法公式,得P(A)=P(x=3)+P(x=4)=416+316=716.
  (2)由题知事件B包括三个互斥事件:中一等奖(x=6),中二等奖(x=5),中三等奖(事件A).
  事件x=5的取法有2种:(2,3),(3,2),故P(x=5)=216;
  事件x=6的取法有1种:(3,3),故P(x=6)=116,
  由(1)可知,P(A)=716,
  由互斥事件的加法公式,得P(B)=P(x=5)+P(x=6)+P(A)=216+116+716=58.
  点评:将复杂事件的概率转化为彼此互斥事件的概率进行求解,其关键在于确定事件划分的标准,要保证不重不漏,即依据此标准划分后,任意两个事件不同时发生,并且这些互斥事件的并集就是所求事件.
  二、正难则反法
  对于较复杂的古典概型问题,如果直接求解有困难时,可利用正难则反的思维策略,将其转化为其对立事件的概率求解.此类试题的典型条件是"至少"、"至多"、"否定"或"肯定"等.
  例2一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
  (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
  (2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n
  分析:利用列举法求解编号之和大于4的概率,列举出又放回抽取两球编号的所有结果,满足n
  解析:(1)从袋中随机抽取两个球,其一切可能结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个.
  因此所求事件的概率为13.
  (2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
  所有满足条件n≥m+2的事件为(1,3)(1,4)(2,4),共3个.
  所以满足条件n≥m+2的事件的概率为P1=316,
  故满足条件n
  点评:在数学解题中,若从正面或顺向难以解决,则不妨进行反面或逆向思考,这就是正难则反策略.这种策略提醒我们,从正面解决困难时可考虑反面求解,直接解决困难时可考虑间接解决,顺推困难时可考虑逆推.这种思维实际上是逆向思维,体现了思维的灵活.
  三、数形结合法
  根据已知条件作出大致的几何图形.从而确定运用何种测度公式.
  例3已知关于x的一元二次函数f(x)=ax2-4bx+1.
  (1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
  (2)设点(a,b)是区域x+y-8≤0
  x>0
  y>0内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
  分析:根据原函数是增函数确定a,b的范围,枚举基本事件总数与事件A的个数,可求第(1)问,作出可行域,计算测度(面积),计算第(2)问.
  解析:(1)∵函数f(x)=ax2-4bx+1图象的对称轴为x=2ba,要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且2ba≤1,即2b≤a.
  若a=1,则b=-1;若a=2,则b=-1,1;若a=3,则b=-1,1.
  ∴事件包含基本事件的个数是1+2+2=5,∴所求事件的概率为515=13.
  (2)由(1)知当且仅当2b≤a且a>0时,
  函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
  依条件可知试验的全部结果所构成的区域为{(a,b)|a+b-8≤0


  核心期刊网(www.hexinqk.com)秉承“诚以为基,信以为本”的宗旨,为广大学者老师提供投稿辅导、写作指导、核心期刊推荐等服务。
  核心期刊网专业期刊发表机构,为学术研究工作者解决北大核心CSSCI核心统计源核心EI核心等投稿辅导咨询与写作指导的问题。

  投稿辅导咨询电话:18915033935
  投稿辅导客服QQ: 论文投稿1002080872 论文投稿1003158336
  投稿辅导投稿邮箱:1003158336@qq.com
------分隔线----------------------------
栏目列表  
推荐论文  
热点论文  
 
QQ在线咨询
投稿辅导热线:
189-1503-3935
微信号咨询:
18915033935
网站简介 核刊总览 普刊专栏 期刊验证 学术答疑 服务流程 写作指南 支付方式 信用说明 联系我们
CopyRight © 2013 All Rights Reserved.
免责声明:本站提供投稿辅导 论文投稿 投稿辅导 核心期刊检索 核心投稿辅导等服务,本站刊载文章仅代表作者观点
并不意味着本站认同,部分作品系转载,版权归原作者或相应的机构;若某篇作品侵犯您的权利,请来信告知:1003158336@qq.com